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Disclaimer:  

- the subject of this talk is about more than just colliders. It is a capability that 
HEP has and can be used elsewhere. However, we will use collider examples 
to illustrate various points. 

- This is a rapidly growing effort with many contributors: 
www.fastmachinelearning.org

http://www.fastmachinelearning.org/
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Challenge: Rates and Complexity

CMS 
Calorimeter

s
Pixels 

‘Phase-0’ ~80k 66M
‘Phase-1’ ~90k 123M
‘Phase-2’ 6.5M 2B

Future proton colliders 
will significantly exceed 
these requirements 

Number of channels

- At Level-1 Trigger new event 
coming every 25 ns

- 100s of Tbps
- Total latency budget ~10us

In HL-LHC the average number will go 
up to <PU>=200
FCC-hh <PU> = 800-1000
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Solution?

Option 1:  Send more data out
- requires very high bandwidth, low 
power, rad hard links
- requires ultra fast data 
reconstruction

Option 2:  put more logic to frontend
- Local tracking/clustering, efficient 

data encoding 
- More logic = more power. Again, has 

to be rad hard or cold (e.g. LAr)
- No FPGA => ASIC  

Can machine learning help with one or both options?
(in principle ML algorithms are naturally suited for this job) 

Front-end

Front-end Back-end

Back-end
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Data Processing

Employ ML algorithms 
in Level-1 hardware

Rewrite CPU-intensive  
HLT/Offline tasks using ML

Accelerate using co-
processors (e.g. FPGAs)

I will mostly focus on this

Back-end

LHC Physicists Other Physicists Industry
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What is hls4ml
User-friendly tool to build and optimize ML models for FPGAs: 
- Reads as input models trained with standard ML libraries
- Uses Xilinx HLS software
- Comes with implementation of common ingredients (layers, activation functions, binary 
NN ...) 

https://fastmachinelearning.org/hls4ml/
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Quickly Growing Community
✦ LHC Efforts:

◼ Prompt and Displaced Muons
◼ Calorimeter Clustering
◼ Tau Identification
◼ Jet Substructure/Tagging
◼ Anomaly detection

✦ Beyond-LHC efforts
◼ Neutrino Event Reconstruction
◼ Fixed Target Experiments
◼ Observational Cosmology
◼ GW detection
◼ System controls
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hls4ml in ASIC

Future: Can we implement more sophisticated ML algorithms in the on-detector 
ASICS?
- smarter data compression
- local tracking/clustering
- anomaly detection (channel sync, time drift, other issues?  )

There must be other applications… 

Technology: LP CMOS 65nm
Power: 280mW (@25ns this is 7nJ per 
inference) — 10x better than FPGA
Network: 4448 multiplications, 2286 
parameters
Area: 2.5 mm2
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System Controls

Can we have ML based accelerator 
and detector controls?
- Example use case pursued for the 

Fermilab accelerator complex

Take it further: the idea of future 
intelligent systems
- Detect an anomaly using online data and 
re-calibrate the response
- Requires online training
- many challenges on both algorithm and 
HW side 

Goes beyond HEP!

Accelerator Real-time Edge AI for Distributed Systems (READS)

readout system resulting in the loss of useful detector data. Substantial increases of the SDF value
typically require a large effort over a long period of time [4], [5]. This proposal has a great potential to
significantly improve on the SDF limit through the exploration of ML and hence, increase the Mu2e
uptime.

The Spill Regulation System is implemented in the Intel Arria10 SoC with custom carrier board
(Fig. 2, left) and it has several control loops. The main way to control the extraction rate is by
regulating the voltage reference current to drive the tune ramping quads. The ramping curve of quad
excitation determines the shape of the beam intensity profile during the spill. The other handle to
control the extraction rate is the fast modulation of the RFKO system. RFKO is used to effectively
heat the beam in the horizontal plane and accelerate the diffusion of particles into the unstable areas.
The SRS uses the PID control loop to simultaneously regulate these two primary beam correction
elements.

The loop will use the spill monitor intensity measurements to monitor the instantaneous and
integrated spill parameters. This signal will be provided as a reference for the fast PID loop and as
an input for the two other loops.

Figure 2: Delivery Ring and control loop for the Spill Regulation System

ML for the Spill Regulation System
The PID loop parameters (gains) need to be re-optimized in real time. This can be done very effectively
with ML. Moreover, in this case the loop gains can be expanded into a nonlinear time-dependent series
to provide a better coverage of the regulation frequency range.

Bringing the ML agent into the process opens the way to extend the operational functions of the
SRS with inclusion of new environmental inputs: (1) the turn-by-turn beam position monitor (BPM)
signal and (2) Beam Loss Monitor (BLM) in the DR.

The turn-by-turn beam position measurement (Fig. 3-left) can be used to calculate the injection
beam steering error. This error may have a substantial random component, leading to an unpredictable
distortion of the beam shape and therefore, the spill profile. The analog signal trace for the first 50
turns can be digitized and analyzed in the Spill Regulation System to provide immediate information
on the beam shape change for every spill. The ML process will help to determine the algorithm for
spill-to-spill corrections for the squeeze waveform.

Small beam losses at the design level near 2% create significant radiation constraints with the

Narrative Section B 4
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Summary

✦ The size, rate and complexity of future detectors presents a 
significant challenge for online and offline data 
reconstruction

✦ Machine Learning has a potential to help solve some of 
these problems
◼ Note that I focused almost entirely on inference, fast learning is a 

whole different topic, but ties to autonomous systems

✦ Foundation for this effort has been built and we are looking 
to extend it in many directions across HEP and beyond it
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Extras
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A quick how-to

✦ Easy to install via pip: git clone … && cd hls4ml && pip install 
.

✦ Easy to configure through yaml config file

✦ Easy to run: 
keras-config.yml

Inputs: your trained model
Precision: inputs, weights, biases, …
ReuseFactor: how much to parallelize
Strategy:
Resource for large NN
Latency for pipelined-based code 
for small NN

Conversion: hls4ml convert -c keras-config.yml
Build: hls4ml build -p my-hls-test -c -s -r
Help: hls4ml -h / hls4ml command -h 
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Data Processing

Stream through PCIexpress

<1μs 1ms-1s

Optical to electrical to fpga pins
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The Team
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Challenges for HLT/Offline

10x larger events * 5x the rate * 10 years of data-taking

And what if we need to expand the physics program? 



Deep Learning in Level-1
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CMS Muon Reconstruction Steps

Implementation in Virtex-7 
FPGA in MTF-7 uTCA boards
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The Challenge

✦ More data => more physics, but also more PileUp.
✦ Currently up to 70 collisions per event. 
✦ In HL-LHC the average number will go up to <PU>=200
✦ FCC-hh <PU> = 800-1000

This is an event collected in 2016. Interaction region is ~10 cm in Z


